From Innovation to Commercialization

We are at the forefront of transforming organic molecules into light emitting devices. Significant performance advances continue to be made in our OLED technologies.

Flexible AMOLED
Our team demonstrated the world’s first high-resolution AMOLED on flexible metal foil using amorphous Siliccon technology — for next generation display communications systems.

Solid-state white OLED lighting
Our energy-efficient wOLED™ white OLED performance achievements earned us honors from the U.S. Department of Energy.

OLED displays
Key customers began mass production of vibrant, full-color AMOLED displays using our high-efficiency PHOLED™ technology and materials.

Flexible AMOLED

CORPORATE OFFICEs

Princeton Crossroads Corporate Center
375 Phillips Boulevard
Ewing, NJ 08618
609.671.0980 [p]
609.671.0995 [f]
www.universaldisplay.com

SHAREHOLDER CONTACT

Dean L. Ledger
Shareholder Relations
Executive Vice President
609.671.0051

ASIAN CONTACT

Dr. Sue-Yuan Lynn
Director of Asian Operations
609.671.4004

CORPORATE COUNSEL

Morgan Lewis & Bockius LLP
1200 Market Street
Philadelphia, PA 19107

INTELLECTUAL PROPERTY COUNSEL

Kurzman & Kurzman
One Broadway
New York, NY 10004

INDEPENDENT PUBLIC ACCOUNTANT

KPMG LLP
150 North Market Street
Philadelphia, PA 19108

TRANSFER AGENT & REGISTRAR

American Stock Transfer & Trust Co.
40 Wall Street
New York, NY 10005
From Innovation to Commercialization
We are at the forefront of transforming organic molecules into light-emitting devices. Significant performance advances continue to be made in our OLED technologies.

Key customers began mass production of vibrant, full-color AMOLED displays using our high-efficiency PHOLED™ technology and materials.

Solid-state white OLED lighting
Our energy-efficient WOLED™ white OLED performance achievements earned us honors from the U.S. Department of Energy.

Flexible AMOLED
Our team demonstrated the world’s first high-resolution AMOLED on flexible metal foil using amorphous Silicon technology — for next generation display communications systems.

OLED displays
Early in the year, Samsung SDI Co., Ltd., one of our technology licensees and key materials customers, began shipping AMOLED displays using our proprietary PHOLED™ phosphorescent OLED technology and materials from their new flat billion-dollar manufacturing plant. By the fourth quarter, they reported that they were in mass production, and by the end year, products with Samsung SDI displays, including cell phones and personal media players from companies like Samsung, Kyocera, Nokia, Sony Ericsson, and Toshiba, were in the market. To meet their growing production plans, we produced and sold increasing quantities of PHOLED materials and began to receive growing royalties. Samsung SDI announced plans to double capacity in 2008 — to more than 3 million displays per month by year-end.

Ch Mei EL Corporation (CMEL), a subsidiary of Ch Mei Optoelectronics Corporation, a leading manufacturer of active-matrix liquid crystal displays headquartered in Taiwan, also began shipping AMOLED displays in 2007, using our proprietary PHOLED materials and technology. Our PHOLEDs have the potential to be up to four times more power efficient than previously thought possible. Greater efficiencies, combined with lower heat generation, make our PHOLEDs important for high-performance portable applications, as well as for LED TVs and future solid-state white OLED lighting.

We announced a multi-faceted relationship with LG Philips LCD Co. Ltd., of South Korea, now known as LG Display Co. Ltd. (LGD). In addition to signing an agreement for their purchase of our PHOLED materials and technology, we began actively working with LGD, one of the world’s largest flat panel display manufacturers, to develop flexible AMOLEDs on metallic foil.

Throughout 2007, we continued to drive technology through innovation, making excellent performance gains in our red, green, and blue PHOLED systems. We also announced significant progress in the development of PHOLED™ printable phosphorescent OLEDs. This progress supported our joint work with Seiko Epson Corporation to create high-performance materials that are compatible with inkjet printing for cost-effective, large-area OLED manufacturing. We also continued to collaborate with our long-standing research partners at Princeton University, the University of Michigan, and the University of Southern California on new and next-generation organic electronics technologies.

Our partnership with PPG Industries, Inc., a leading global coatings and specialty products and services company, continues to thrive. As our exclusive supplier of Universal Display’s proprietary PHOLED materials, PPG developed supply capabilities that supported the introduction of two new second-generation red PHOLED materials to our commercial high-performance product line.

Universal Display continued its strategic relationships with leading OLED materials companies. We reported advances in PHOLED performance through the combination of our PHOLED emitters with new host materials from Nippon Shokuhin Kasei Company. We also extended our collaboration with Idemitsu Kosan Co., Ltd. to combine our PHOLED emitters with their host materials. We believe it is important to OLED manufacturers that technology and material suppliers work together to help accelerate OLED commercialization.

Significant advances toward our vision for a flexible future were made throughout 2007. Our joint development with LG and L-3 Communications Corporation, Display Systems, a leading military systems integrator, resulted in the demonstration of the world’s first high resolution AMOLED built on flexible metallic foil using an amorphous silicon backplane. In part supported through new funding from the U.S. Department of Defense, this development is paving the way for next-generation products that are very thin, lightweight, conformable and rugged.

As the world continues to seek energy conservation through innovation, our OLED technologies can play an important role in the development of “greener” lighting products. Through the use of our high-efficiency PHOLED technology, WOLED™ white OLEDs have the potential to achieve more than 150 lumens per Watt — significantly better than incandescent and fluorescent lighting today. With additional U.S. Department of Energy funding in 2007, our team earned honors from them for our continued WOLED performance achievements.

Universal Display is in a financial position of strength with $58 million in cash and cash equivalents on hand at year-end and no outstanding debt. This is, in part, due to the $4.9 million stock offering, which demonstrated continued support for the growth potential of our company. As our customers transition to increased commercial activities and the OLED industry continues to gain momentum, our talented team, our strong patent portfolio and our high-performance materials position us for growth in 2008 and beyond.
Early in the year, Samsung SDI Co. Ltd., one of our technology licensees and key material customers, began shipping AMOLED displays using our proprietary PHOLED™ phosphorescent OLED technology and materials from their new 8.5 billion dollar manufacturing plant. By the fourth quarter, they reported that they were in mass production, and by year end, products with Samsung SDI displays, including cell phones and personal media players from giants, like KSDB, Kyocera, Nvidia, Sony Ericsson, and Toshiba, were in the market. To meet their growing production plans, we produced and sold increasing quantities of PHOLED materials and began to receive growing royalties. Samsung SDI announced plans to double capacity in 2008 — to more than 3 million displays per month by year end.

Chi Mei EL Corporation (CMEL), a subsidiary of Chi Mei Optoelectronics Corporation, a leading manufacturer of active-matrix liquid crystal displays headquartered in Taiwan, also began shipping AMOLED displays in 2007, using our proprietary PHOLED materials and technology. Our PHOLEDs have the potential to be up to four times more power efficient than previously thought possible. Greater efficiencies, combined with lower heat generation, make our PHOLEDs important for high-performance portable applications, as well as for OLED TVs and future solid-state white OLED lighting.

We announced a multi-faceted relationship with LG Philips LCD Co. Ltd., of South Korea, now known as LG Display Co. Ltd. (LGD). In addition to signing an agreement for the purchase of all our PHOLED materials and technology, we began actively working with LGD, one of the world’s largest flat panel display manufacturers, to develop Flexible AMOLEDs on metallic foil.

Throughout 2007, we continued to drive technology through innovation, making excellent performance gains in our red, green, and blue PHOLED systems. We also announced significant progress in the development of PHOLED™ printable, phosphorescent OLEDs. This progress supported our joint work with Seiko Epson Corporation to create high-performance materials that are compatible with ink-jet printing for cost-effective, large-area OLED manufacturing. We also continued to collaborate with our long-standing research partners at Princeton University, the University of Michigan, and the University of Southern California on new and next-generation organic electronics technologies.

Our partnership with PPG Industries, Inc., a leading global coatings and specialty products and services company, continues to thrive. As our exclusive supplier of Universal Display’s proprietary PHOLED materials, PPG developed supply capabilities that supported the introduction of two new second-generation red PHOLED materials to our commercial PHOLED product line.

Universal Display continued its strategic relationships with leading OLED materials companies. We reported advances in PHOLED performance through the combination of our PHOLED emitters with new host materials from Nippon Sheet Chemical Company. We also extended our collaboration with Idemitsu Kosan Co. Ltd. to combine our PHOLED emitters with their host materials. We believe it is important to OLED manufacturers that technology and material suppliers work together to help accelerate OLED commercialization.

Significant advances toward our vision for a flexible future were made throughout 2007. Our joint development with LGD and 3 Communications Corporation, Display Systems, a leading military systems integrator, resulted in the demonstration of the world’s first high resolution AMOLED built on flexible metallic foil using an anode-free silicon backplane. In part supported through new funding from the U.S. Department of Defense, this development is paving the way for next-generation products that are very thin, lightweight, conformable and rugged.

As the world continues to seek energy conservation through innovation, our OLED technologies can play an important role in the development of “greener” lighting products. Through the use of our high-efficiency PHOLED technology, WOLED™ white OLEDs have the potential to achieve more than 150 lumens per Watt — significantly better than incandescent and fluorescent lighting today. With additional U.S. Department of Energy funding in 2007, our team earned honors from them for our continued WOLED performance achievements.

Universal Display is in a financial position of strength with $3.9 million of cash and cash equivalents on hand at year end and no outstanding debt. This is, in part, a result of the $4 million stock offering, which demonstrated continued support for the growth potential of our company. As our customers transition to increased commercial activities and the OLED industry continues to gain momentum, our talented team, our strong patent portfolio and our high performance materials position us for growth in 2008 and beyond.
Early in the year, Samsung SDI Co., Ltd., one of our technology licensees and key materials customers, began shipping AMOLED displays using our proprietary PHOLED™ phosphorescent OLED technology and materials from their new 11 billion dollar manufacturing plant. By the fourth quarter, they reported that they were in mass production, and by year end, products with Samsung SDI displays, including cell phones and personal media players from Intacta, since KSDB, Kyosera, Nokia, Sony Ericsson, and Toshiba, were in the market. To meet their growing production plans, we produced and sold increasing quantities of PHOLED materials and began to receive growing royalties. Samsung SDI announced plans to double capacity in 2008 — to more than 3 million displays per month by year end.

Chi Mei El Corporation (CMC), a subsidiary of Chi Mei Optoelectronics Corporation, a leading manufacturer of active-matrix liquid crystal displays headquartered in Taiwan, also began shipping AMOLED displays in 2007, utilizing our proprietary PHOLED materials and technology. Our PHOLEDs have the potential to be up to four times more power efficient than previously thought possible. Greater efficiencies, combined with lower heat generation, make our PHOLEDs important for high-performance portable applications, as well as for OLED TV and future solid-state white OLED lighting.

We announced a multi-faceted relationship with LG Philips LCD Co., Ltd., of South Korea, now known as LG Display Co., Ltd. (LGD). In addition to signing an agreement for their use of our PHOLED materials and technology, we began actively working with LGD, one of the world’s largest flat panel display manufacturers, to develop flexible AMOLEDs on metallic foil.

Throughout 2007, we continued to drive technology through innovation, making excellent performance gains in our red, green and blue PHOLED systems. We also announced significant progress in the development of PHOLED™ printable, phosphorescent OLEDs. This progress supported our joint work with Seiko Epson Corporation to create high-performance materials that are compatible with inkjet printing for cost-effective, large-area OLED manufacturing. We also continued to collaborate with our long-standing research partners at Princeton University, the University of Michigan and the University of Southern California on next-generation organic electronics technologies.

Our partnership with PPG Industries, Inc., a leading global coatings and specialty products and services company, continues to thrive. As our exclusive supplier of Universal Display’s proprietary PHOLED materials, PPG developed supply capabilities that supported the introduction of two new second-generation red PHOLED materials to our commercial PHOLED product line.

Universal Display continued its strategic relationships with leading OLED materials companies. We reported advances in PHOLED performance through the combination of our PHOLED emitters with new host materials from Nippon Sheet Glass Company. We also extended our collaboration with Idemitsu Kosan Co., Ltd. to supply our PHOLED materials with their host materials. We believe it is important to OLED manufacturers that technology and material suppliers work together to help accelerate OLED commercialization.

Significant advances toward our vision for a flexible future were made throughout 2007. Our joint development with LGD and L3 Communications Corporation, Display Systems, a leading military systems integrator, resulted in the demonstration of the world’s first high resolution AMOLED built on flexible metallic foil using an amorphous silicon backplane. In part supported through new funding from the U.S. Department of Defense, this development is paving the way for next generation products that are very thin, lightweight, conformable and rugged.

As the world continues to seek energy conservation through innovation, our OLED technologies can play an important role in the development of “greener” lighting products. Through the use of our high efficiency PHOLED technology, WOLED™ white OLEDs have the potential to achieve more than 150 lumens per Watter — significantly better than incandescent and fluorescent lighting today. With additional U.S. Department of Energy funding in 2007, our team earned honors from them for our continued WOLED performance achievements.

Universal Display is in a financial position of strength with $83.7 million in cash and cash equivalents on hand at year end and no outstanding debt. This is in part, due to the $54.9 million stock offering, which demonstrated continued support for the growth potential of our company. As our customers transition to increased commercial activities and the OLED industry continues to gain momentum, our talented team, our strong patent portfolio and our high performance materials position us for growth in 2008 and beyond.

SCIENTIFIC ADVISORY BOARD

- **Dr. [Name]**
 - Vice President & Chief Technical Officer

- **Dr. [Name]**
 - Specialist Product Development

- **Dr. [Name]**
 - President & Chief Executive Officer

- **Dr. [Name]**
 - Optical products

- **Dr. [Name]**
 - Engineering & physics

- **Dr. [Name]**
 - University of Michigan

- **Dr. [Name]**
 - Department of Chemistry

- **Dr. [Name]**
 - University of Southern California

- **Dr. [Name]**
 - Sony

- **Dr. [Name]**
 - Toyoa Industries

- **Dr. [Name]**
 - University of Michigan

- **Dr. [Name]**
 - University of South Carolina

- **Dr. [Name]**
 - Sony Air Force Research Laboratory

- **Dr. [Name]**
 - University of California

- **Dr. [Name]**
 - U.S. Army Research Laboratory

- **Dr. [Name]**
 - University of Maryland

- **Dr. [Name]**
 - U.S. Air Force

- **Dr. [Name]**
 - University of Southern California

- **Dr. [Name]**
 - U.S. Department of Energy

- **Dr. [Name]**
 - Display Consortium

- **Dr. [Name]**
 - Vitex Systems

universal display corporation partnerships and alliances

- **AirOptix**
 - Biotronik

- **Chu Mei EL**
 - National Taiwan University

- **Dyson Displays**
 - New Jersey Technology Council

- **Flexible Display Center**
 - Nippon Steel Chemical

- **Idemitsu Kosan**
 - Pioneer & Fujiko Tachito Photonics

- **Konica Minolta**
 - PPG Industries

- **Kyung Hee University**
 - Princeton University

- **LG Display**
 - Sumsung SDI

- **Mitsubishi Chemical**
 - Sony

- **Novaled**
 - Tohoku Pioneer & Michigan

- **Optoelectronics**
 - Vitex Systems

- **Pioneer & Pioneer Photonics**
 - University of Southern California

- **Philips**
 - Vitex Systems

- **PPG Industries**
 - Vitex Systems

- **Samsung SDI**
 - Vitex Systems

- **Soraa**
 - Vitex Systems

- **Sony**
 - Vitex Systems

- **Television**
 - Vitex Systems

- **Texas Instruments**
 - Vitex Systems

- **University of California**
 - Vitex Systems

- **University of Michigan**
 - Vitex Systems

- **University of Southern California**
 - Vitex Systems

- **Vitex Systems**
 - Vitex Systems

- **Witcon**
 - Vitex Systems

- **Wixt**
 - Vitex Systems

- **Xerox**
 - Vitex Systems

- **Xerox**
 - Vitex Systems

- **Yamaha**
 - Vitex Systems

- **Zones**
 - Vitex Systems

Board of Directors

- **Sherene I. Salgoof**
 - Founder & Chair of the Board

- **Steven E. Abramson**
 - President & Chief Executive Officer

- **Sidney D. Rosenblatt**
 - Managing Partner

- **Charles F. Corry**
 - Founder, President, Chair of the Board

- **Lawrence Lacerte**
 - Managing Partner

- **Dr. Mark E. Thompson**
 - President & Chief Executive Officer

- **Dr. Leonard Becker**
 - Managing Partner

- **Dr. Peter Faller**
 - Executive Vice President, Optical Products

- **Dr. Stephen R. Forrest**
 - Vice President for Research Laboratory of Michigan

- **Dr. Lawrence Lacerte**
 - Founder, President, Chair of the Board

- **Dr. Michael Hack**
 - Managing Partner

- **Dr. Joseph F. Turchi**
 - Managing Director, Optical Photonics

- **Dr. Lawrence Lacerte**
 - Founder, President, Chair of the Board

- **Dr. Sherene I. Salgoof**
 - Founder & Chair of the Board

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Sherene I. Salgoof**
 - Founder & Chair of the Board

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Sherene I. Salgoof**
 - Founder & Chair of the Board

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Sherene I. Salgoof**
 - Founder & Chair of the Board

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Sherene I. Salgoof**
 - Founder & Chair of the Board

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Sherene I. Salgoof**
 - Founder & Chair of the Board

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Sherene I. Salgoof**
 - Founder & Chair of the Board

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Sherene I. Salgoof**
 - Founder & Chair of the Board

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Sherene I. Salgoof**
 - Founder & Chair of the Board

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Sherene I. Salgoof**
 - Founder & Chair of the Board

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Sherene I. Salgoof**
 - Founder & Chair of the Board

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Sherene I. Salgoof**
 - Founder & Chair of the Board

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Sherene I. Salgoof**
 - Founder & Chair of the Board

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Sherene I. Salgoof**
 - Founder & Chair of the Board

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Sherene I. Salgoof**
 - Founder & Chair of the Board

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Sherene I. Salgoof**
 - Founder & Chair of the Board

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Sherene I. Salgoof**
 - Founder & Chair of the Board

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Sherene I. Salgoof**
 - Founder & Chair of the Board

- **Dr. Steven E. Abramson**
 - President & Chief Executive Officer

- **Dr. Sherene I. Salgoof**
 - Founder & Chair of the Board
Key customers began mass production of vibrant, full-color AMOLED displays using our high-efficiency PHOLED™ technology and materials.

Our energy-efficient wOLED™ white OLED performance achievements earned us honors from the U.S. Department of Energy.

Our team demonstrated the world’s first high-resolution AMOLED on flexible metal foil using amorphous-Silicon technology — for next generation display communications systems.